Applied Laplace- and z-Transforms for Scientists and Engineers

A Computational Approach Using a *Mathematica* Package

Contents

Chapter 1 Laplace Transformation 1

1.1 The One- SidedLaplace Transform1.2 The Two- SidedLaplace Transform1.3 Ordinary Linear Differential Equations	1 41 60	
Chapter 2 z-Transformation 75		
2.1 z- Transformand Inverse z- Transforms2.2 Difference Equations	75 105	
Chapter 3 Laplace Transforms with the Packa	age 115	
 3.1 Basics 3.2 The Use of Transformation Rules 3.3 The Finite Laplace Transform 3.4 Special Functions 3.5 Inverse Laplace Transformation 3.6 Differential Equations 	115 118 128 130 140 147	
Chapter 4 z- Transformation with the Package	e 155	
4.1 Basics4.2 Use of Transformation Rules4.3 Difference Equations	155 158 162	
Chapter 5 Applications To Automatic Control	l 167	
 5.1 Controller Configurations 5.2 State- Variable Analysis 5.3 Second Order Differential Systems 5.4 Stability 5.5 Frequency Analysis 5.6 Sample- Dat Control Systems 	167 172 182 186 190 199	
Chapter 6 Laplace Transformation Further Topics 219		
6.1 The Complex Inversion Formula6.2 Laplace Transforms and Asymptotics6.3 Differential Equations	219 250 285	
Chapter 7 z- TransformationFurther Topics 297		
7.1 The Advanced z- Transformation7.2 Applications7.3 Use of the Package	297 313 320	

Chapter 8	Examples	from	Electricity	333
------------------	----------	------	-------------	-----

8.1	Transmission Lines	333
8.2	Electrical Networks	350

Chapter 9 Examples from Control Engineering 363

9.1	Control of an Inverted Pendulum	363
9.2	Controling a Seesaw- Pendulum	372
9.3	Control of a DC Motor	381
9.4	A Magnetic- Ball- Suspension- System	396
9.5	A Sampled- DatState- VariablControl System	401

Chapter 10 Heat Conduction and Vibration Problems 405

10.1	Flow of Heat	405
10.2	Waves and Vibrations in Elastic Solids	426

Chapter 11 Further Techniques 437

11.1	Duhamel's Formulas	437
11.2	Green's Functions	444
11.3	Fundamental Solutions	466
11.4	Finite Fourier Transforms	475

Chapter 12 Numerical Inversion of Laplace Transforms 483

12.1	Inversion by the Use of Laguerre Functions	484
12.2	Inversion by Use of Fourier Analysis	487
12.3	The Use of Gaussian Quadrature Formulas	492
12.4	The Method of Gaver and Stehfest	494
12.5	Example	495

Appendix: Package Commands by Subjects 499

Bibliography 509